648 research outputs found

    The Economic Costs and Benefits of Dental Education: An Empirical Analysis

    Get PDF
    The rising costs associated with obtaining a dental education have caused some to question the financial benefit of pursuing a dental degree. There is a concern that recent graduates may have difficulty finding professional opportunities that provide the income necessary to service their accumulated educational debt. The aim of this study was to evaluate the trends in educational costs to aid in making an accurate appraisal of the financial benefit of a dental education. Adjusted into constant dollar terms, data from a variety of sources were collected for economic variables such as tuition, fees, student indebtedness, and dentists’ earnings. These variables were then analyzed to determine the true costs and benefits of obtaining a dental education. The results showed that, over the course of the last decade, educational costs increased faster than the real net income of practicing dentists, which led to a decline in the return on investment in dental education. However, regardless of an applicant’s choice of public or private dental school, there continues to be a positive economic return on students’ commitment of both financial resources and time to receive a dental education

    MRI characterization of cobalt dichloride-N-acetyl cysteine (C4) contrast agent marker for prostate brachytherapy

    Get PDF
    Brachytherapy, a radiotherapy technique for treating prostate cancer, involves the implantation of numerous radioactive seeds into the prostate. While the implanted seeds can be easily identified on a CT image, distinguishing the prostate and surrounding soft tissues is not as straightforward. Magnetic Resonance Imaging (MRI) offers superior anatomical delineation, but the seeds appear as dark voids and are difficult to identify, thus creating a conundrum. Cobalt dichloride-N-acetylcysteine (C4) has previously been shown to be promising as an encapsulated contrast agent marker. We performed spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) measurements of C4 solutions with varying cobalt dichloride concentrations to determine the corresponding relaxivities, r1 and r2. These relaxation parameters were investigated at different field strengths, temperatures and orientations. T1 measurements obtained at 1.5 T and 3.0 T, as well as at room and body temperature, showed that r1 is field-independent and temperatureindependent. Conversely, the T2 values at 3.0 T were shorter than at 1.5 T, while the T2 values at body temperature were slightly higher than at room temperature. By examining the relaxivities with the C4 vials aligned in three different planes, we found no orientation-dependence. With these relaxation characteristics, we aim to develop pulse sequences that will enhance the C4 signal against prostatic stroma. Ultimately, the use of C4 as a positive contrast agent marker will encourage the use of MRI to obtain an accurate representation of the radiation dose delivered to the prostate and surrounding normal anatomical structures

    Effects of Photoacoustic Imaging and Photothermal Ablation Therapy Mediated by Targeted Hollow Gold Nanospheres in an Orthotopic Mouse Xenograft Model of Glioma

    Get PDF
    Advancements in nanotechnology have made it possible to create multifunctional nanostructures that can be used simultaneously to image and treat cancers. For example, hollow gold nanospheres (HAuNS) have been shown to generate intense photoacoustic signals and induce efficient photothermal ablation (PTA) therapy. In this study, we used photoacoustic tomography, a hybrid imaging modality, to assess the intravenous delivery of HAuNS targeted to integrins that are overexpressed in both glioma and angiogenic blood vessels in a mouse model of glioma. Mice were then treated with near-infrared laser, which elevated tumor temperature by 20.7°C. We found that PTA treatment significantly prolonged the survival of tumor-bearing mice. Taken together, these results show the feasibility of using a single nanostructure for image-guided local tumor PTA therapy with photoacoustic molecular imaging

    Detecting Remote Evolutionary Relationships among Proteins by Large-Scale Semantic Embedding

    Get PDF
    Virtually every molecular biologist has searched a protein or DNA sequence database to find sequences that are evolutionarily related to a given query. Pairwise sequence comparison methods—i.e., measures of similarity between query and target sequences—provide the engine for sequence database search and have been the subject of 30 years of computational research. For the difficult problem of detecting remote evolutionary relationships between protein sequences, the most successful pairwise comparison methods involve building local models (e.g., profile hidden Markov models) of protein sequences. However, recent work in massive data domains like web search and natural language processing demonstrate the advantage of exploiting the global structure of the data space. Motivated by this work, we present a large-scale algorithm called ProtEmbed, which learns an embedding of protein sequences into a low-dimensional “semantic space.” Evolutionarily related proteins are embedded in close proximity, and additional pieces of evidence, such as 3D structural similarity or class labels, can be incorporated into the learning process. We find that ProtEmbed achieves superior accuracy to widely used pairwise sequence methods like PSI-BLAST and HHSearch for remote homology detection; it also outperforms our previous RankProp algorithm, which incorporates global structure in the form of a protein similarity network. Finally, the ProtEmbed embedding space can be visualized, both at the global level and local to a given query, yielding intuition about the structure of protein sequence space

    Identifying the science and technology dimensions of emerging public policy issues through horizon scanning

    Get PDF
    Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security.Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security

    Effects of Photoacoustic Imaging and Photothermal Ablation Therapy Mediated by Targeted Hollow Gold Nanospheres in an Orthotopic Mouse Xenograft Model of Glioma

    Get PDF
    Advancements in nanotechnology have made it possible to create multifunctional nanostructures that can be used simultaneously to image and treat cancers. For example, hollow gold nanospheres (HAuNS) have been shown to generate intense photoacoustic signals and induce efficient photothermal ablation (PTA) therapy. In this study, we used photoacoustic tomography, a hybrid imaging modality, to assess the intravenous delivery of HAuNS targeted to integrins that are overexpressed in both glioma and angiogenic blood vessels in a mouse model of glioma. Mice were then treated with near-infrared laser, which elevated tumor temperature by 20.7°C. We found that PTA treatment significantly prolonged the survival of tumor-bearing mice. Taken together, these results show the feasibility of using a single nanostructure for image-guided local tumor PTA therapy with photoacoustic molecular imaging

    Changing the Paradigm for Management of Pediatric Primary Spontaneous Pneumothorax: A Simple Aspiration Test Predicts Need for Operation

    Get PDF
    Purpose Chest tube (CT) management for pediatric primary spontaneous pneumothorax (PSP) is associated with long hospital stays and high recurrence rates. To streamline management, we explored simple aspiration as a test to predict need for surgery. Methods A multi-institution, prospective pilot study of patients with first presentation for PSP at 9 children’s hospitals was performed. Aspiration was performed through a pigtail catheter, followed by 6 h observation with CT clamped. If pneumothorax recurred during observation, the aspiration test failed and subsequent management was per surgeon discretion. Results Thirty-three patients were managed with simple aspiration. Aspiration was successful in 16 of 33 (48%), while 17 (52%) failed the aspiration test and required hospitalization. Twelve who failed aspiration underwent CT management, of which 10 (83%) failed CT management owing to either persistent air leak requiring VATS or subsequent PSP recurrence. Recurrence rate was significantly greater in the group that failed aspiration compared to the group that passed aspiration [10/12 (83%) vs 7/16 (44%), respectively, P = 0.028]. Conclusion Simple aspiration test upon presentation with PSP predicts chest tube failure with 83% positive predictive value. We recommend changing the PSP management algorithm to include an initial simple aspiration test, and if that fails, proceed directly to VATS

    Imaging Long-Term Fate of Intramyocardially Implanted Mesenchymal Stem Cells in a Porcine Myocardial Infarction Model

    Get PDF
    The long-term fate of stem cells after intramyocardial delivery is unknown. We used noninvasive, repetitive PET/CT imaging with [18F]FEAU to monitor the long-term (up to 5 months) spatial-temporal dynamics of MSCs retrovirally transduced with the sr39HSV1-tk gene (sr39HSV1-tk-MSC) and implanted intramyocardially in pigs with induced acute myocardial infarction. Repetitive [18F]FEAU PET/CT revealed a biphasic pattern of sr39HSV1-tk-MSC dynamics; cell proliferation peaked at 33–35 days after injection, in periinfarct regions and the major cardiac lymphatic vessels and lymph nodes. The sr39HSV1-tk-MSC–associated [18F]FEAU signals gradually decreased thereafter. Cardiac lymphography studies using PG-Gd-NIRF813 contrast for MRI and near-infrared fluorescence imaging showed rapid clearance of the contrast from the site of intramyocardial injection through the subepicardial lymphatic network into the lymphatic vessels and periaortic lymph nodes. Immunohistochemical analysis of cardiac tissue obtained at 35 and 150 days demonstrated several types of sr39HSV1-tk expressing cells, including fibro-myoblasts, lymphovascular cells, and microvascular and arterial endothelium. In summary, this study demonstrated the feasibility and sensitivity of [18F]FEAU PET/CT imaging for long-term, in-vivo monitoring (up to 5 months) of the fate of intramyocardially injected sr39HSV1-tk-MSC cells. Intramyocardially transplanted MSCs appear to integrate into the lymphatic endothelium and may help improve myocardial lymphatic system function after MI
    corecore